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Abstract

In countries without adequate death registration systems, adult mortality is often
estimated using orphanhood-based methods. The HIV pandemic breaches several
assumptions of these methods, for example, by increasing the correlation between
maternal and child survival. We generated 1152 populations facing HIV epidemics
with microsimulations and evaluated orphanhood-based estimates against the un-
derlying mortality rates. We regressed survivorship probabilities on proportions of
respondents with surviving mothers, adjusting for trends in seroprevalence and the
coverage of antiretroviral therapy. We tested the coefficients on survey and census
data from 16 African countries with high HIV prevalence. The original orphan-
hood method underestimates mortality during an AIDS epidemic: better estimates
can be obtained using revised coefficients applied to synthetic measures of maternal
survival. The resulting estimates agree well with those of the UN Population Divi-
sion. Orphanhood-based estimates can fill data gaps on adult mortality, including in
countries with high HIV prevalence.

Keywords: Adult mortality, indirect estimation, orphanhood method, HIV/AIDS, microsim-
ulation
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1 Introduction

The highest levels of adult mortality worldwide are found in Sub-Saharan Africa (SSA). Accord-

ing to the United Nations (2022), the risk of dying between the ages 15 and 50 was greater than

10% in 61 countries in 2022; 48 of these high-mortality countries were located in SSA. However,

because of the under-development of systems of Civil Registration and Vital Statistics (CRVS) in

the region, the magnitude of this mortality burden is hard to quantify. Only a handful of countries

can generate reliable mortality estimates from their death registration system, for example, South

Africa and Zimbabwe (Feeney 2001, Joubert et al. 2013), while other countries have high-quality

data in their capital city only (Masquelier et al. 2019).

Available adult mortality estimates, such as those developed by the United Nations Population

Division and the Institute for Health Metrics and Evaluation, are therefore based on statistical

models that synthesize a fairly limited set of primary estimates from censuses and surveys in

SSA (United Nations 2022, Wang et al. 2020). These primary estimates typically stem from

three main approaches: evaluating intercensal population change by age and sex, eliciting reports

on recent household deaths, and assessing survival among close relatives (Hill et al. 2005). In

particular, sibling survival histories have proved useful in reconstructing trends and age patterns

of mortality (Timæus and Jasseh 2004). These are, however, relatively time-consuming to collect

and inappropriate for use in censuses or rapid turn-around surveys. In contrast, orphanhood-based

methods generally require only that two questions are asked: “Is your mother alive?” and “Is your

father alive?”. No information is required on the ages of surviving parents, ages at death, or the

timing of the deaths. Mortality is estimated instead from the proportions of surviving parents.

Since parents were alive at the time of the birth of their children (or at the time of conception for

fathers), the duration of the exposure to the risk of dying corresponds to the age of the respondents.

The average age of the parents at the start of the exposure period is simply the mean age at child-

bearing. Proportions of parents alive reported by individuals aged 𝑎 are thus closely related to the
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probability of surviving from 𝑀 to 𝑀 +𝑎 (𝑎𝑝𝑀), where 𝑀 stands for the mean age at childbearing.

Henry (1960) and Brass and Hill (1973) developed the original orphanhood method, based

on the theory of stable populations, which enables the expression of the frequency and survival

of close relatives as a function of mortality and fertility rates. Several revisions have been pro-

posed since (Hill and Trussell 1977, Palloni and Heligman 1985, Timæus 1991a; 1992). About a

hundred censuses conducted in SSA have included orphanhood questions (Table S1). Nationally-

representative surveys, such as the Demographic and Health Surveys (DHS) and Multiple Indicator

Cluster Surveys (MICS) also regularly collect data on parental survival among children under 18

years of age. Numerous studies have estimated adult mortality by means of orphanhood-based

methods, including studies in populations with high HIV prevalence (Tollman et al. 1999, Feeney

2001, Dorrington et al. 2004, Hosegood et al. 2004, Lesotho NSO 2009, Nhacolo et al. 2006,

Chisumpa and Dorrington 2011, Menashe Oren and Stecklov 2018, Odimegwu et al. 2018). Yet,

orphanhood-based estimates remain less frequently used to monitor trends in mortality than sib-

ling survival histories. For example, they are not included in the mortality database of the Global

Burden of Disease Study (Wang et al. 2020).

The patchy use of orphanhood data for mortality estimation is probably due to concerns over

data quality. The reporting of fostered orphans as non-orphans, an error referred to as “adoption

effect”, is thought to be common (Blacker and Mukiza-Gapere 1988, Robertson et al. 2008).

Methods have been developed to correct for this, however, either by estimating mortality from

orphanhood among adults only (Timæus 1991b) or by constructing synthetic cohorts from two

sets of data on orphanhood (Timæus 1986; 1991a).

Another source of scepticism about orphanhood-based methods is related to selection biases.

These arise if the probabilities of dying of mothers and children are correlated, if the fertility
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of mothers is associated with their mortality, or when the mortality of children varies with the

number of their siblings. In normal circumstances, these selection biases tend to cancel each other

out (Palloni et al. 1984). In recent decades, however, HIV epidemics have amplified these biases.

The transmission of HIV from mothers to children ranges from 15-45% in the absence of treat-

ment (De Cock et al. 2000). Because of vertical transmission, fewer orphans will survive among

those born to HIV-positive parents. Thus, seronegative parents will be oversampled in reports

from censuses and surveys. Lower fertility of seropositive mothers will also bias the estimates

downwards. Additional errors are introduced when proportions of parents alive are converted

into measures of mortality with coefficients that were calculated based on standard age patterns

of mortality. This is because such age patterns do not reflect the “hump” in adult mortality rates

that is typical of populations experiencing a generalized HIV epidemic (Masquelier et al. 2017).

Finally, biases are also introduced because the rapid changes in mortality during the course of the

pandemic violate the assumption of a regular trend in mortality which underlies the calculation

of reference periods for the estimates (Brass and Bamgboye 1981).

The only attempt to adapt orphanhood-based methods for use in countries facing HIV/AIDS

epidemics dates back to the mid-1990s. Timæus and Nunn (1997) developed approximate ex-

pressions for the HIV-related selection biases and proposed an adjustment for the proportions of

mothers alive. They also suggested a new set of coefficients to convert the adjusted proportions

into survivorship probabilities for females, based on age-specific mortality rates reflecting the

burden of AIDS. They warned, however, that these coefficients were provisional because they

were based on prospective mortality data collected in a single rural community in Uganda (Asiki

et al. 2013). In addition, their method did not account for antiretroviral therapy (ART), which

was only introduced in the area in 2004 (Kasamba et al. 2012).

In this study, we assess the sensitivity of orphanhood-based methods to HIV-related bias using
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a more diverse set of simulations than in the initial study by Timæus and Nunn (1997). We use

microsimulated populations that model vertical transmission of HIV, reduced fertility of HIV-

positive mothers and shifts in age patterns of mortality due to AIDS. The impact of antiretroviral

therapy (ART), including the Prevention of Mother to Child Transmission (PMTCT), is also

explicitly modelled. A new procedure for making the estimates is developed for use when at least

two series of maternal orphanhood reports are available from successive surveys or censuses, in

addition to estimates of HIV prevalence and treatment coverage. We develop this new approach

in our simulated environment and evaluate it using survey and census data for 16 countries where

the peak in HIV prevalence exceeded 5% in females (UNAIDS 2022)1.

2 Data and methods

2.1 The conventional orphanhood method

The conventional orphanhood method is summarized below. We refer readers to Timæus (2013)

for a detailed explanation and for Excel templates that facilitate the application of the method. The

method is best expounded by starting from a child of age 𝑎, taken at random from a population

whose fertility rates and survival function are 𝑚(𝑥) and 𝑙 (𝑥) (Keyfitz and Caswell 2005). The

probability that the mother is still alive, conditional on her having given birth at age 𝑥, is 𝑎𝑝𝑥 . To

eliminate this condition, the survival probabilities should be averaged over all reproductive ages,

weighting each age 𝑥 by the number of births that occurred at this age. In a stable population, the

age distribution of the female population is constant and depends on 𝑙𝑥 , 𝑚𝑥 and 𝑟, the intrinsic

growth rate. This leads to the equation introduced by Lotka (1931) for the probability that a child

1These countries are: Botswana, Cameroon, Central African Republic, Cote d’Ivoire, Eswatini, Kenya, Lesotho,
Malawi, Mozambique, Namibia, Rwanda, South Africa, Tanzania, Uganda, Zambia, Zimbabwe. Trends in HIV
prevalence and coverage of ART and PMTCT were extracted from Spectrum (https://www.avenirhealth.org/
software-spectrum.php). We used version 6.23 based on the 2022 UNAIDS estimates (www.unaids.org).
Gabon and Equatorial Guinea also experienced a severe HIV epidemic with a prevalence among women aged 15-49
exceeding 5%, but these two countries are excluded from the analysis due to the paucity of data on orphanhood.

https://www.avenirhealth.org/software-spectrum.php
https://www.avenirhealth.org/software-spectrum.php
www.unaids.org
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aged 𝑎 has a surviving mother under the prevailing conditions of mortality and fertility:

𝑆(𝑎) =
∫ 𝛽

𝛼
𝑎𝑝𝑥 𝑥 𝑝0 𝑒−𝑟𝑥𝑚(𝑥)𝑑𝑥 (1)

From this, the proportion of mothers surviving among those who gave birth to a child who is now

aged 𝑦 to 𝑦 + 5 years can be expressed as:

5𝑆𝑦 =

∫ 𝑦+5
𝑦

𝑒−𝑟 (𝑎) 𝑎𝑝0
∫ 𝛽

𝛼
𝑒−𝑟 (𝑥) 𝑥+𝑎𝑝0 𝑚(𝑥)𝑑𝑥 𝑑𝑎∫ 𝑦+5

𝑦
𝑒−𝑟 (𝑎) 𝑎𝑝0

∫ 𝛽

𝛼
𝑒−𝑟 (𝑥) 𝑥 𝑝0 𝑚(𝑥)𝑑𝑥 𝑑𝑎

(2)

By specifying a series of fertility and mortality rates through standard age patterns, Eq. 2 can

be used to approximate numerically the proportions 5𝑆𝑦 (Brass and Hill 1973). The proportions

can be connected to the probabilities 𝑛𝑝𝑀 , calculated in the life tables from which they were

generated, for example through linear regression, which yields a set of coefficients for each age

group 𝑦. For convenience, 𝑀 is often replaced by 25, a round number close to the mean age at

childbearing among women and an estimate of the mean age at childbearing is included in the

regression as a covariate to control for the actual timing of fertility. It can be obtained as the

average age of women giving birth in a 12-month period about 𝑦 years ago. Timæus (1992) used

the following equation:

𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆𝑛−5 (3)

where 𝑛𝑝25 is the chance of a woman surviving between age 25 and 25 + 𝑛, 𝑀 is the mean age

at childbearing and 5𝑆𝑛−5 is the proportion of respondents in the age group 𝑛 − 5 to 𝑛 whose

mother is still alive. The 𝛽 coefficients are presented in Table S2. Other regression equations

have been tested and provide different sets of coefficients (Hill and Trussell 1977, United Nations

1983, Palloni and Heligman 1985). In the absence of HIV, the estimated probabilities 𝑛𝑝25 are

not very sensitive to the choice of the coefficients, especially when based on reports from young

respondents (𝑛 < 35) (Masquelier 2010). Timæus (1992) also developed coefficients to estimate
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men’s mortality from paternal orphanhood.

The proportions of parents reported to be alive by adult respondents refer to mortality and

fertility rates over a longer period than those derived from the reports of young children. A time

to which the estimate refers should therefore be calculated. Existing time location procedures

assume a linear trend in mortality levels, captured through the 𝛼 parameter of the Brass logit

system (Brass and Bamgboye 1981) or trends in life expectancy (Palloni and Heligman 1985).

These procedures also assume a steady increase in mortality by age. Once time-located, the

probabilities, 𝑛𝑝25, obtained from the reports of respondents in different five-year age groups

𝑛 − 5 to 𝑛 need to be converted into a common index of mortality, such as the probability 35𝑝15,

to be comparable and depict the general trend in mortality. This can be achieved either through

relational models (such as the Brass logit model) or by interpolating within other families of

model life tables (Coale et al. 1983, INDEPTH 2004).

2.2 Distortions due to HIV/AIDS

As mentioned earlier, the HIV epidemic undermines the validity of the conventional orphanhood

method. Three important sources of bias exist. First, selection biases are magnified by the vertical

transmission of the virus and the reduced fertility of seropositive women, which both inflate the

proportions of mothers reported to be alive. Second, HIV epidemics generate atypical age patterns

of mortality: the risk of dying rises rapidly with age across the early adult ages (between 15 and

30 years) and then increases more slowly with age than in standard model schedules. This leads

the standard coefficients to overestimate survivorship. Third, increases in mortality due to AIDS,

and the declines that have followed due to the uptake of ART and behavioural changes, violate

the assumption that the trend in all-cause mortality is linear and unidirectional. Thus, the series

of estimates made from respondents of different ages can no longer be interpreted as indicative

of the period trend in mortality.
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To address the first problem, Timæus and Nunn (1997) re-arranged Equation 2 to distinguish

between seronegative mothers who remain uninfected, seropositive mothers at the time of birth,

and mothers who become infected after the birth of their child. They proposed an adjustment to the

observed proportions of mothers remaining alive. This adjustment is based on two parameters; 𝐹,

the ratio of the fertility of seropositive to seronegative women (assumed to be age-invariant), and

ℎ, the proportion of children born to seropositive mothers who become infected in the perinatal

period. In addition to ℎ and 𝐹, an estimate of the prevalence of HIV infection among women

attending prenatal clinics (𝑃) is needed. The corrected proportions of mothers alive (5𝑆
′
𝑛) are

obtained from the observed proportions (5𝑆
∗
𝑛), such that:

5𝑆
′
𝑛 =

1 − ℎ𝑃

1 + 1−𝐹
𝐹

× 𝑃
×5 𝑆

∗
𝑛 (4)

If an estimate of the HIV prevalence in the population is used (𝑃∗), the equation becomes:

5𝑆
′
𝑛 = [1 − (1 − (1 − ℎ) × 𝐹) × 𝑃∗] ×5 𝑆

∗
𝑛 (5)

One can assume that the risk of mother-to-child transmission is about a third, and the fertility of

seropositive women is about 75% of that of seronegative women (De Cock et al. 2000, Chen and

Walker 2010). Thus, a suitable adjustment might be:

5𝑆
′
𝑛 = [1 − 0.5 × 𝑃∗] ×5 𝑆

∗
𝑛 (6)

This correction is easy to implement but assumes that all mothers who were already infected when

the respondents were born died before the survey. Because this is unrealistic for young respon-

dents, Timæus (2013) later recommended that the adjustment applied to reports from respondents

aged 5-9 be halved (1−0.25×𝑃∗) and reduced by a quarter for 10- to 14-year-olds (1−0.375×𝑃∗).
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To address the second problem, related to distortions introduced in age patterns of mortality,

Timæus and Nunn (1997) developed simulations based on prospective mortality data from the

Masaka Health and Demographic Surveillance System (HDSS) in Uganda in 1990-95. Their

simulations were based on stable population theory, assuming that the characteristics of the

HIV epidemic at that time are kept constant. These simulations allowed them to compute a

set of coefficients that can be used to convert the proportions of mothers alive into life table

survivorship estimates when HIV prevalence is 5% or greater. These coefficients are reproduced

in Table S3. The third problem, associated with the time trend in mortality, has not been explicitly

addressed in the literature. Most attempts to estimate mortality from orphanhood in settings with

high HIV have ignored this problem and used time-location procedures that assume a smooth

and unidirectional trend in mortality (e.g. Feeney (2001), Hosegood et al. (2004), Nhacolo et al.

(2006), Menashe Oren and Stecklov (2018), Odimegwu et al. (2018)). Estimates produced in this

way will inevitably smooth out the sudden reversals and accelerations in mortality trends to be

expected in populations experiencing a generalized HIV epidemic.

2.3 The microsimulation set

To produce a more confident assessment of the magnitude of the HIV-related biases in orphanhood-

based estimates than Timæus and Nunn (1997) obtained by an analytic approach, we resorted to

demographic microsimulations. These are models in which individuals experience vital events

as a result of stochastic experiments with pre-defined probabilistic rules (Zagheni 2015). We

used SOCSIM, a discrete-time microsimulation model that keeps track of kinship links between

individuals (Wachter et al. 1997, Verdery et al. 2020). The simulations were run by periods,

during which all parameters are kept constant; the first period corresponds to conditions of a

stable population and lasts from year 0 to 200. Populations reach about 100 000 individuals at

that point. Ten periods of 5 years follow, during which the population face an HIV epidemic.

The growth rate during these 50 years evolves according to the severity of the epidemic; some
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populations reach 150 000 individuals in the year 250, while others decline to 85 000 survivors.

For the period preceding the onset of the HIV epidemic, the mortality and fertility rates are

similar to those used by Timæus (1992), although fewer parameters are retained to allow for the

introduction of additional parameters related to HIV while limiting the number of simulations and

the computational burden of producing them. The populations were exposed to various levels of

non-AIDS mortality, modeled with the Brass relational model, by specifying three values for the

𝛼𝑚 parameter (capturing variations in the level of mortality) and two values for the 𝛽𝑚 parameter

(capturing differences in age patterns), using Brass’ general standard (Brass 1971). Fertility was

also modeled with a relational model, with two values of 𝛼 𝑓 (capturing the age location of the

fertility schedule) and two values of 𝛽 𝑓 (capturing the spread of the fertility schedule) (Brass

1974). The standard used for the fertility schedule was created by Booth (1984) for populations

with high fertility. The waiting time to each event was generated randomly from a piecewise

exponential distribution. The stable-equivalent population obtained analytically from the survival

curve, the shape of the fertility schedule and the growth rate was used to specify the age structure

of the starting population. The initial growth rate was set at 2% and kept constant until the

onset of the epidemic, to be consistent with the method’s original calculations (Hill and Trussell

1977, Timæus 1992). Using a single value of the growth rate is adequate as variations in age

structure have little effect on mortality estimates derived from orphanhood (Timæus 1992). The

corresponding non-AIDS life expectancies at birth range from 43.1 to 68.3 years, while the mean

ages at childbearing range from 25.1 to 29.8 years.

The parameters used to model the HIV epidemic are inspired by those underpinning the UN-

AIDS Spectrum package (Stover et al. 2012; 2017). Following Zagheni (2011), HIV/AIDS was

modelled in SOCSIM by splitting the population into sub-groups: (i) seronegative individuals,

(ii) those that have been infected with HIV through sexual transmission but are in the asymp-
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tomatic phase, (iii) those who have developed acquired immunodeficiency syndrome (AIDS), (iv)

children infected with HIV through vertical transmission, and (v) individuals who have initiated

antiretroviral treatment (Figure S1). HIV infection is governed by age-specific rates, depending

on trends in incidence. A gamma distribution was used to impose a plausible shape on the HIV

incidence curve (Heuveline 2003). It depends on two parameters 𝛼hiv and 𝛽hiv, as follows (Clark

et al. 2012):

Γ𝑡2−𝑡1 =

𝑡2∫
𝑡1

𝑥𝛼hiv−1𝑒−𝑥/𝛽hiv

(𝛼hiv − 1)!𝛽𝛼hiv
hiv

𝑑𝑥 (7)

This curve defines the trend in HIV incidence between times 𝑡1 and 𝑡2; the scale of the epidemic

was determined by an additional parameter 𝐻, such that the proportion of individuals that are

uninfected at time 𝑡1 and alive and HIV-positive at time 𝑡2 is:

𝑖𝑡1 = 1 − 𝑒𝑥𝑝
{
−Γ𝑡2−𝑡1𝐻

}
(8)

The age distribution of HIV infections was obtained as an average of patterns derived from

cross-sectional measurements of HIV prevalence in DHS (Stover et al. 2010). Once infected,

individuals remain exposed to background mortality and progress to AIDS according to a Weibull

distribution (with a median time from infection to AIDS of 8.55 years for females) (Fig. S2).

These progression rates were used in the Spectrum program before the approach was revised to

accommodate changes in the criteria for eligibility for ART (Stover 2009). In our simulations, the

transition to AIDS is governed solely by the time since infection. The transition from the AIDS

stage to death was also modelled with a Weibull distribution with a median time from AIDS to

death of 1.95 years. The fertility of infected women relative to uninfected women was fixed at

1.26 for women aged 15 to 19, 0.76 for women aged 20 to 24, and 0.67 for those aged 25 or more,

based on ratios between age-specific fertility in HIV-positive women and HIV-negative women

observed in 19 community-based studies (Lewis et al. 2004).
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The probability of vertical transmission in utero or during delivery for a child born to an

HIV-positive mother was assumed to be 20% in the absence of treatment (Stover et al. 2012).

The probability of infection through breastfeeding varies by age of the child and depends on an

average proportion of children who received exclusive or mixed breastfeeding. The survival of

HIV-infected children is defined by a double Weibull curve and varies with the age at infection,

based on Stover et al. (2012). Based on data from 16 countries where the prevalence of HIV

reached at least 5% according to UNAIDS, we developed three scenarios for the expansion of the

coverage of treatment with ART and PMTCT: rapid treatment scale-up, slow treatment scale-up,

and no treatment (see appendix). In the simulations with treatment, the proportion of children

infected vertically was revised downwards based on PMTCT treatment trends. We assumed that

there is no dropout from ART treatment, that patients on ART also benefit from PMTCT and

that the fertility of women receiving ART is similar to that of those who have not yet initiated

treatment. The probability of survival on ART is fixed at 85% in the first year, and 95% for each

additional year on treatment (Stover et al. 2008). Adults on ART are also exposed to mortality

from other causes. All the simulations were run twice, once with and once without vertical

transmission and reduced fertility due to HIV.

The values of the main parameters used to set up these simulations are shown in Table 1.

Their combination results in 1152 different simulations. Figure 1 presents the following model

inputs: (1) the survival curves of the non-AIDS life tables, (2) the fertility schedules, and (3) the

incidence curves. It also displays the resulting trends in HIV prevalence among women aged 15

to 49.

3 Results

3.1 Effect of the HIV epidemic on orphanhood prevalence and adult mortality

As a calibration exercise, Figure 2a presents trends in orphanhood prevalence among children

aged 5-9 years and 10-14 years in one simulation set, selected to broadly reflect the HIV epidemic
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in Zimbabwe. For this illustration, the years of the simulation have been recoded such that the

onset of the epidemic is around 1977. Proportions of orphaned children aged 5-9 and 10-14

observed in surveys and censuses in Zimbabwe are represented by blue circles2. In Zimbabwe,

the prevalence of maternal orphanhood among 5-9 year olds increased from 2% in the 1982

census to 9% in the 2009 MICS, then declined to 3% in the 2019 MICS. The orphan prevalence

recalculated from the simulation follows a similar trend, hovering around the expected prevalence

in the stable equivalent population until the mid 1980s (2%), then increasing rapidly to peak at

10% in 2006, before declining to reach 3% in 2019.

In this simulation, AIDS-free life expectancy at birth is 68 years for women and the risk of

dying between the ages of 15 and 50 is 89 per thousand before the HIV epidemic unfolds (Figure

2b). This probability then increases to reach 513 per thousand in 2004. Sibling histories collected

in the DHS surveys in Zimbabwe depict a similar mortality increase, from 142 per thousand in

the 1994 DHS to 443 per thousand in the 2005 DHS (Central Statistical Office Zimbabwe and

Macro International 1995; 2007). The prevalence of HIV infection among women of reproductive

age peaks at 23% in this simulation in 2001, which is close to the prevalence measured in the

2005-2006 DHS (21.1%). According to UNAIDS, the peak in prevalence in women aged 15-49

was earlier and higher, in 1996, at 28.3%. The simulation, therefore, does not reproduce the

evolution of the HIV epidemic in Zimbabwe, but follows a similar enough pathway to be used

here for illustrative purposes. Figure S4 compares the proportions of maternal orphans in all DHS

conducted in high-HIV countries to those observed in the microsimulation set, as well as adult

and child mortality rates in these two series. These comparisons suggest that simulations are well

calibrated.
2These estimates were extracted from the 1982, 1992, 2002 and 2012 censuses, the 1997 Intercensal Survey, the

1994, 1999, 2005-2006, 2010-2011, and 2015 DHS, as well as the 2009, 2014, and 2019 MICS surveys.
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3.2 Estimates obtained from one survey/census and standard coefficients

We first examine HIV-related biases in the orphanhood estimates obtained from the conventional

method. Proportions of maternal orphans classified by five-year age groups are computed from

simulations as if a survey or census had been conducted every five years. Indirect estimates are

obtained using the coefficients developed by Timæus (1992) and time-located following Brass

and Bamgboye (1981). The “true” mortality rates are obtained by dividing the number of deaths

by age, sex and year by the corresponding exposure, using the exact dates of birth and death of all

females who ever lived in the simulation. Fig. 2(c) is based on the simulation that approximates

the trends observed in Zimbabwe. It confronts the indirect mortality estimates obtained from

maternal orphanhood in respondents aged 5-9 and 15-19 (dashed lines) with the “true” mortality

rates (solid lines). The blue circles correspond to estimates derived from surveys and censuses in

Zimbabwe. In the simulations, the indirect estimates agree well with the direct measures in the

pre-HIV period. After the onset of the epidemic, the probability of dying between exact ages 25

and 35 (10𝑞25) inferred from orphanhood starts to deviate from the underlying mortality rates. It

is underestimated by as much as 58% in 2004. The probability 20𝑞25, based on respondents aged

15-19, is also substantially biased, with a 44% underestimate in 2004. To quantify the magnitude

of the errors across all simulations with different mortality rates and compare age groups, we

compute the ratio of the odds of surviving according to the indirect estimates to the “true” odds

of surviving, as follows:
𝑛𝑝

indirect
25

1 −𝑛 𝑝
indirect
25

×
1 −𝑛 𝑝

true
25

𝑛𝑝
true
25

(9)

Fig. 2(d) displays the median ratios for the 576 simulations with reduced fertility and vertical

transmission (see also Table S4). As in the Zimbabwe example, the indirect estimates are close

to the underlying mortality rates before HIV is introduced; the median ratios range between 1.00

and 1.05. (Small deviations are to be expected as we did not use exactly the same parameters

as in Timæus (1992) to build the simulations). Once HIV is introduced, the median ratios first

decline below 1, indicating that mortality is overestimated in the 10 to 15 years following the onset
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of the epidemic. This is because trends are overly smoothed by the conventional time location

procedure, estimates for the beginning of the epidemic are capturing some of the subsequent

mortality increase. This effect is most pronounced when estimating 20𝑝25 (median ratios = 0.93,

7 years after the onset of HIV). As the epidemic unfolds, the median ratios rise substantially for

all survivorship probabilities, before shrinking as the epidemic recedes. The bias is larger when

estimates are inferred from reports from younger respondents, but the errors are still substantial

for the older age groups. The odds of surviving between ages 25 and 35 are overestimated by

as much as 85% about 30 years after the onset of the epidemic, against 46% for the probability

45𝑝25.

3.3 Existing adjustments for HIV-related bias

We detailed above the different adjustments developed by Timæus and Nunn (1997). Figure 2(e)

shows the risks of dying obtained from the simulation resembling Zimbabwe and from surveys

or censuses conducted in the country, after applying these adjustments when HIV prevalence at

the time of birth is higher than 5%. The indirect estimates of mortality are now much closer to

the underlying mortality for the youngest respondents (5-9 years), but seem too high in the most

recent periods. In addition, the indirect estimates for 20𝑞25 remain considerably lower than the

underlying mortality rates. To generalize over all simulations with reduced fertility and vertical

transmission, Figure 2(f) displays the median ratios of the estimated to the true life table odds of

surviving. For the youngest age group (𝑛 = 10), the errors are substantially reduced compared to

estimates obtained without any adjustment for HIV. However, the odds of survival are overesti-

mated about 20 years after the onset of the epidemic, before being underestimated, with median

ratios approaching 0.6. Biases are much reduced for the probabilities 15𝑞25 to 20𝑞25, but the latest

ratios are also lower than 1. For the older age groups, biases are similar to those observed with

the original method. This is because at the time Timæus and Nunn (1997) conducted their study,

Uganda was only about 15 years into its HIV epidemic and no evidence existed as to how large
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an impact it would have in future on the mortality of older women.

The remaining errors might have three sources, again related to bias in proportions of moth-

ers surviving, the conversion of proportions into life-table survivorship and the procedure for

estimating mortality trends. First, the adjustment for proportions of surviving mothers does not

incorporate the effects of PMTCT on the risk of vertical transmission. The effect of ART on

fertility and survival in HIV-positive women is not accounted for either. The adjusted proportions

of surviving mothers will therefore be too low once treatment has been scaled-up. Figure 3

illustrates this. The left-hand plot shows proportions of respondents with surviving mother in a

simulation that has the same parameters as the one resembling Zimbabwe, except that nobody

receives ART. The right-hand plot shows the same proportions, with treatment coverage reaching

90%. The dashed lines refer to the proportions that, according to the simulations, one would

observe in surveys, while the solid lines represent the unbiased proportions. These unbiased

proportions are obtained without any HIV-related bias and are computed in simulations with

exactly the same parameters, except that we disabled vertical transmission and reduced fertility

of HIV-infected mothers. The proportions adjusted as suggested by Timæus and Nunn (1997)

are displayed with triangles. In the absence of treatment (Figure 3(a)), the adjusted proportions

are consistent with the unbiased proportions, suggesting that vertical transmission and reduced

fertility could indeed be accounted for in this way before ART and PMTCT were introduced. By

contrast, in the simulation that includes ART and PMTCT (Figure 3(b)), the adjusted proportions

are found to be too low. Timæus and Nunn (1997) had to assume that all HIV-positive mothers

die when their child reaches 5 years of age to develop their adjustment, and then reduced the

adjustment by a fixed age factor to account for the fact that many of the mothers of young children

would still be alive at the time of data collection. However, this procedure is no longer adequate as

the bias cannot be approximated based solely on ℎ and 𝐹 once a substantial proportion of infected

women are receiving ART.3.

3This is because the numerators of equations (1) and (2) in Timæus and Nunn (1997) are no longer identical.
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A second source of bias is that the coefficients developed in the 1990s were based on the

limited evidence available at that time and also do not account for the introduction of treatment,

which became available later. Timæus and Nunn (1997) used prospective mortality data from a

HDSS where the HIV prevalence among the adult population was about 8%, a level well below the

peak of HIV prevalence observed since in several countries. The age pattern of HIV prevalence

was also assumed to be fixed and seroprevalence peaked in women in their mid-twenties. In our

simulations, the age pattern of HIV varies over time. In the first 10 years after HIV is introduced,

prevalence peaks among women aged 20-24, but it gradually shifts to older ages and by 20 years

into the epidemic peaks among women aged 25-29 in about half of the simulations. In addition,

the scale-up of ART changes age patterns of mortality. Since the mid-2000s, the coverage of

ART has dramatically increased in Sub-Saharan Africa. By 2021, it had reached 82% in West

and Central Africa and 79% in East and Southern Africa (UNAIDS 2022). As noted earlier, a

third source of bias is that deriving a series of dated estimates from a single set of proportions is

inappropriate when mortality trends have been highly disrupted.

3.4 A revised method based on two sets of proportions of mothers alive

To address these three sources of errors, we first re-examined the relationship between the unbi-

ased proportions and the proportions affected by fertility reduction and vertical transmission. In

Figure S5 in appendix, the three graphs on the left present the ratios of the unbiased to the observed

proportions, according to HIV prevalence at birth, without any adjustment to the proportions,

based only on simulations without treatment (𝑆𝑛/𝑆∗𝑛). Bias is linearly associated with prevalence,

as established previously by Timæus and Nunn (1997). The coefficient of the slope of the linear

regression is -0.248 for the 5-9 age group, -0.378 for the 10-14 age group, and -0.477 for the 15-19

age group. These coefficients are remarkably consistent with the adjustments that Timæus and

Nunn (1997) developed analytically (i.e. 1− 0.25× 𝑃, 1− 0.375× 𝑃, and 1− 0.5× 𝑃, see section

Using their formulation, 𝑁+ (𝑎) (corresponding to the number of living HIV-positive women who have given birth 𝑎

years ago if their fertility was the same as other women) is no longer zero in the presence of the treatment.
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2.2). In the middle panel, we present the ratios based on proportions after using such adjustments

(𝑆𝑛/𝑆
′
𝑛), but considering now all simulations, including those with treatment. These ratios are

too high. Moreover, for the first age group, the error is directly related to PMTCT coverage at

the time of birth. For subsequent age groups, the magnitude of the bias is associated with ART

coverage at the time of the survey.

We tested seven regression models to predict the bias in the proportions based on covariates that

are made available by UNAIDS for all countries. We included as covariates, various combinations

of HIV prevalence, PMTCT and ART coverage measured at time of the survey or at birth (Table

S5). The dependent variable was the ratio of the unbiased to the observed proportions. All the

models were run separately for each age group. To evaluate model performance, we randomly

selected 80% of the simulations to fit the models and calculated the out-of-sample RMSE based

on predictions in the remaining simulations. The prediction errors are displayed in Table S5.

Across age groups, the best-performing model was as follows:

5𝑆𝑛

5𝑆
∗
𝑛

= 𝛽0(𝑛) + 𝛽1(𝑛) [𝐻𝐼𝑉𝑡−𝑛+2.5 × (1 − 𝑃𝑀𝑇𝐶𝑇𝑡−𝑛+2.5)] + 𝛽2(𝑛) 𝐴𝑅𝑇𝑡 (10)

where 𝐻𝐼𝑉𝑡−𝑛+2.5 and 𝑃𝑀𝑇𝐶𝑇𝑡−𝑛+2.5 are HIV prevalence and PMTCT coverage respectively, at

the time when the respondents were born, while 𝐴𝑅𝑇𝑡 refers to ART coverage at the time of

the survey. The 𝛽 coefficients are presented in Table 2. The ratios obtained from proportions

corrected by means of these coefficients are displayed in the right-hand panel (𝑆𝑛/𝑆
′′
𝑛 ) of Figure

S5.

Once the proportions have been corrected for HIV-related bias in the reports, they can be

related to the underlying mortality levels, but this raises the question of the reference period to

consider. It does not seem possible to develop a new procedure for dating the estimates that

captures the diversity of temporal changes in mortality in HIV/AIDS-affected settings or that

adequately addresses the built-in tendency of the lifetime proportions to smooth out abrupt dis-
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continuities in mortality trends. To circumvent this problem, one can use two sets of proportions

from successive surveys or censuses to construct synthetic cohorts. The construction of synthetic

cohorts was first proposed by Zlotnik and Hill (1981), who suggested chaining together changes

experienced by a given age cohort (in terms of the survival of their parents) during the intercensal

or intersurvey period. Alternatively, Preston (1987) proposed working with the changes experi-

enced by a given age group between two censuses or surveys. A correction factor is computed

based on the growth rate of the proportion of parents alive. This provides the proportion of parents

alive that pertains to the intercensal period and would be observed in a stationary population. This

approach was originally developed to generate estimates that refer to more recent periods than the

cohort measures and that are less biased by the under-reporting of parental deaths (Timæus 1986).

In contexts affected by HIV, synthetic cohorts offer the additional advantage that they do not re-

quire any assumption made about the trend in mortality prior to the collection of the first set of data.

Proportions for a hypothetical cohort can be obtained by adjusting each set of proportions

for HIV-related bias based on Equation 10, and chaining successive sets as suggested by Preston

(1987). The remaining task is then to convert these proportions into life table survivorship es-

timates. Using microsimulations, Figure 4a presents the relationship between the probabilities

10𝑝25 and proportions 5𝑆(ℎ)5, in simulations without treatment. The simulation highlighted with

large dots has the same parameters as the one that resembles Zimbabwe, but without any treatment.

When HIV prevalence is less than 5%, the relationship between the two series is well represented

by the coefficients from Timæus (1992) (straight green line, for a value of 𝑀 of 25). However, as

HIV prevalence increases, the slope of the regression line steepens, as already demonstrated by

Timæus and Nunn (1997). They thus recalculated the intercept and slope of the regression line,

but without introducing HIV as a covariate. This will lead to discontinuities in the trends when

shifting from one set of coefficients to the other, due to the large difference in their intercepts

(orange line in Fig. 4a). It has also become important to incorporate ART among the covariates
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as the slope of the regression line declines again when ART coverage increases, as illustrated in

Figure 4b.

To calculate new coefficients, we evaluated different regression models predicting the survivor-

ship probabilities from the simulated proportions, testing combinations of predictors including

HIV prevalence and ART coverage, measured at the midpoint of the two surveys or at the time

of birth of respondents (Table S6). We also evaluated the predictive performance of models

including 𝐻𝐼𝑉 × (1 − 𝐴𝑅𝑇), which captures the percentage of women who are seropositive and

have not initiated treatment. Because the synthetic proportions are based on changes over time in

the proportions of mothers surviving, in some models we included the absolute difference in HIV

prevalence or in 𝐻𝐼𝑉 × (1 − 𝐴𝑅𝑇) between the two surveys. Some models were fitted over the

full dataset, others used two regressions, one on the data points without any treatment, and one for

data points with a least some women on ART. This helps capture potential changes in age patterns

of mortality in growing and receding pandemics, as the early phases of the roll-out of ART corre-

spond in most countries to the start of the decline in adult mortality (Reniers et al. 2014). Across

the age groups, the best-performing approach used separate models for the pre-ART period and

the period after treatment programmes were introduced:

𝑛𝑝25 = {𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽3 𝐻𝐼𝑉𝑡 + 𝛽4 Δ𝐻𝐼𝑉} (𝐴𝑅𝑇𝑡 = 0)

= {𝛽5(𝑛) + 𝛽6(𝑛) 𝑀 + 𝛽7(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽8 [𝐻𝐼𝑉𝑡 × (1 − 𝐴𝑅𝑇𝑡)] + 𝛽9 Δ[𝐻𝐼𝑉 × (1 − 𝐴𝑅𝑇)]}

(𝐴𝑅𝑇𝑡 > 0)
(11)

Here 𝐻𝐼𝑉𝑡 and 𝐴𝑅𝑇𝑡 refer to the HIV prevalence and ART coverage at the time of data collection

and are obtained as the average of estimates from each survey (since two series are required to

calculate synthetic proportions). The indicators of trends, Δ HIV and Δ[𝐻𝐼𝑉 × (1 − 𝐴𝑅𝑇)]

refer to the absolute difference between the two surveys in the measures. The corresponding

𝛽 coefficients are displayed in Table 3. An Excel template is available in the Supplementary
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materials to facilitate the calculations.

As with other orphanhood-based methods, this new variant is based on approximating the

proportion of surviving mothers by the proportion of children whose mothers are survivors.

This entails assuming that maternal survival remains unaffected by both child survival and

fertility, and that child survival is independent of sibship sizes. After correcting for biases

associated specifically with HIV/AIDS, any resultant selection biases arising from violations of

these assumptions are expected to be minimal (Palloni et al. 1984). When combining age-specific

estimates of 𝑛𝑝25 into a summary index, an additional assumption is required: that the chosen

model life table reflects the underlying age pattern of mortality. We suggest converting all age-

specific estimates into 35𝑝15 using a model life table incorporating mortality attributable to AIDS

(INDEPTH 2004) and averaging the resulting probabilities.

3.5 Orphanhood-based estimates of adult mortality for selected countries in Sub-Saharan Africa

In this section of the article, we test the different estimation approaches on real data for 16 countries

where the peak HIV prevalence exceeded 5% (UNAIDS 2022). We extracted proportions of sur-

viving mothers by age group from censuses, DHS and MICS, and other nationally-representative

surveys (Appendix H) and constructed two sets of estimates:

• The first set considers each census or survey separately, and used standard coefficients

when HIV prevalence was less than 5%, and those developed by Timæus and Nunn (1997)

when it was greater than 5%. The proportions of surviving mothers were adjusted for

HIV/AIDS bias based only on HIV prevalence. The reference periods were calculated

using the method developed by Brass and Bamgboye (1981). This series corresponds to the

procedure generally followed in previous research.

• The second set adjusts the proportions for HIV-related bias using the coefficients in Table

2, and chains successive sets of proportions together to construct synthetic cohorts. We

combined inquiries separated by at least 3 years and less than 11 years to avoid irregularities



22

associated with very short intervals and to allow the combination of successive censuses,

typically conducted every 10 years. Synthetic proportions were converted into life table

estimates using the coefficients derived from microsimulations (Table 3), combined with

estimates of HIV prevalence and ART coverage from UNAIDS (2022). The resulting

mortality estimates are available in the supplementary materials.

In the absence of a gold standard, Figure 5 contrasts the orphanhood-based estimates with

mortality rates from the World Population Prospects (WPP) (United Nations 2022), after inter-

polating these rates to obtain a value referring to the same time period. The country-specific

estimates of the probabilities 10𝑞25 and 15𝑞25 calculated with the new approach are displayed in

Figure 6 (see Figure S6 in appendix for the first set of estimates based on a single survey or

census). Orphanhood data are one input into the existing WPP estimates of mortality. Thus,

the WPP estimates and ours are not entirely independent. In most of the 16 countries though,

the documentation available suggests that direct estimates calculated from sibling histories and

questions about recent deaths in the household and the comparison of successive census counts

had more influence on the WPP estimates than the orphanhood data. In Figure 6, mortality

estimates are also compared to those extracted from sibling survival histories collected in DHS

for the 6 years prior to each survey (Masquelier et al. 2014). We focus on the probabilities 10𝑞25

and 15𝑞25 because these are obtained from respondents aged 5-9 and 10-14. More observations

are available on these age groups than older ones since DHS and MICS surveys do not ask about

parental survival among adults.

According to the patterns observed in simulations, we expect the first set of mortality rates to be

overestimated based on reports from children aged 5-9 when mortality is high, and underestimated

when based on older respondents. This is indeed what is observed in Figure 5(a); the probability

10𝑞25 inferred from maternal survival tends to be below the levels predicted by the WPP when

the risk of dying is lower than 0.07, while it tends to be higher when mortality increases above
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this threshold. The overestimation is likely reduced because of the adoption bias, which was not

introduced in the simulations, and will predominantly affect the estimates from a single survey

or census with the proportions in synthetic cohorts being less affected. Overall, the median ratio

between probabilities 10𝑞25 derived from orphanhood and WPP estimates is 1.26. This ratio drops

below one (0.83) when mortality is lower than 0.07 in WPP, and reaches 1.28 when mortality is

higher. This pattern is also visible in country-specific plots in Figure S6. There are fewer data

points to evaluate the bias on the 15𝑞25 probability, but it appears to be consistently lower than the

WPP estimates. The median ratio between orphanhood-based probabilities and WPP estimates

is as low as 0.54 for this age group. This is likely due to a combination of recall and modelling

biases.

Estimates obtained with the revised estimation approach do not refer to the same periods;

there are fewer estimates available from respondents aged 5-9 years since it is necessary to

combine surveys or censuses, but slightly more from those aged 10-14 years (since the Brass’

dating method, which requires values up to age 19, is no longer used). Overall, there is a better

congruence with WPP than in the previous set of orphanhood estimates: the median ratio between

orphanhood-based rates and WPP is 0.99 for 10𝑞25 and 0.91 for 15𝑞25 (compared to 1.26 and 0.54

with the previous set of orphanhood estimates). Moreover, these median ratios remained stable

over time: for the 10𝑞25 probability, the ratio is 1.05 for the pre-ART period and 0.98 for the

post-ART period, while the corresponding indices for the 15𝑞25 probability were 0.91 at both

periods. The country-specific trends suggest that the new estimates track the WPP probabilities

of death remarkably well (Figure 6). This is the case in Malawi, Namibia, Rwanda, South Africa,

Tanzania, Uganda, Zambia, and Zimbabwe. The rise and fall in probabilities are well reproduced,

and the difference between the 10𝑞25 and 15𝑞25 probabilities is comparable to what is predicted by

the WPP. In most countries (except Zimbabwe in the 1990s and 2000s), the orphanhood estimates

are also in line with the probabilities of death from sibling histories.



24

4 DISCUSSION

Our results demonstrate the large impact of HIV-associated biases on mortality levels inferred

from maternal survival data. We build on previous work by Timæus and Nunn (1997) by gen-

eralizing the series of simulations and relaxing the assumption of a stable population. We show

that, without any adjustment, the conventional orphanhood method will overestimate mortality in

the first few years following the onset of an HIV epidemic and then substantially underestimate

mortality as the epidemic matures. Biases are considerably reduced when using the adjustments

developed by Timæus and Nunn (1997), but they can be further reduced by incorporating infor-

mation on HIV prevalence and PMTCT and ART coverage. The construction of synthetic cohorts

also avoids the heavy smoothing of abrupt changes in the trend in mortality imposed by the basic

orphanhood method. This new variant makes use of prevalence and treatment trends, so unlike

estimates from sibling survival histories or recent household deaths, it does not provide a direct

measure of mortality. The resulting estimates can, however, complement other series of primary

estimates to help better reconstruct mortality trends during the epidemic. When applied to sur-

vey and census data from 16 countries in SSA, this new approach provides estimates that better

reflect the timing of the epidemic and are more consistent with expectations based on the WPP

and sibling histories. Once treatment programmes are scaled-up to the point that HIV-positive

adults benefit from the same survival chances as HIV-negative adults, and vertical transmission is

suppressed in the general population, no correction will be needed. However, reports on parental

survival being collected currently are still affected by selection biases. Moreover, estimates based

on existing data need to be made with methods that adequately reflect mortality patterns before,

during and after the scale-up of ART.

The methods proposed in this study have some limitations. First, the adjustments proposed

here are designed for estimating women’s mortality only. Mortality estimates for men made from

paternal orphanhood data will also be biased because fathers can infect or be infected by mothers,
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who themselves can transmit the virus to their children. Unfortunately, due to the complexity

of modelling the concordance of the HIV status of mothers and fathers and the impact of HIV

on men’s fertility, no adjustment has been developed yet for men’s mortality. One avenue for

future development in this regard might be to leverage the sophisticated modelling of paternal

orphanhood in the Spectrum package (Grassly and Timæus 2005), but this would require revising

this software to also produce outputs on orphanhood in youth and adults. Second, this study is

limited by the assumptions made to model the demographic impact of HIV. For example, treatment

allocation was done randomly at intervals of 5 years, and the mortality of orphans was assumed

to be the same as that of children with living parents (apart from vertical transmission). Most of

the model inputs for the HIV epidemic, such as HIV survival and the age pattern of incidence,

were considered fixed. Third, and perhaps more importantly, we only focused here on selection

biases, leaving aside other possible reporting biases. The most pervasive problem is the adoption

effect. The potential magnitude of this adoption bias can be gauged from a cohort study con-

ducted in Manicaland (Zimbabwe). Robertson et al. (2008) analysed the consistency of reporting

of parent survival status across successive rounds and found that, out of 198 children reported

as maternal orphans in the first round (and followed up to the third round), as many as one third

were reported as non-orphans at least once in the next two rounds. A second problem is caused

by non-responses. Although the proportions of missing data on questions about orphanhood

are usually rather low, they can be of the same order of magnitude as the proportions of young

children that are orphans. One thus needs to make assumptions about the orphanhood status of

children with missing data. Finally, ages reported in censuses and surveys can be affected with

inaccuracies, such as age exaggeration and heaping on round digits. Because of these different

sources of error, estimates from orphan data should always be viewed with caution and compared

to other sources. Nevertheless, in this study, when they were compared with sibling survival data,

they provided comparable estimates of mortality after making the adjustments proposed here for

HIV-related bias.
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Despite these limitations, this study demonstrates that parental survival data remain useful

for estimating mortality in countries lacking a complete death registration system. Provided

disaggregated prevalence and treatment data are available, the new variant of the orphanhood

method we developed could also be used to study mortality differentials in settings affected by

HIV. More research is needed to investigate recall errors and develop ways of adjusting for bias

in paternal orphanhood data. Statistical models could also be developed to combine orphanhood

estimates with data from recent household deaths in censuses and from sibling histories, similarly

to well-established models used for child mortality (Alkema and New 2014). Data on parental

survival should be more systematically collected as they can help fill important data gaps in

Sub-Saharan Africa and track progress against the HIV epidemic. In DHS and MICS surveys,

the questions should be extended to adult respondents as well as children under 18. Additional

questions could also be asked in surveys about the ages of living parents or ages at death or, most

promisingly, dates of death for parents who have died, to allow more direct calculation (Chackiel

and Orellana 1985). Although HIV/AIDS-related mortality has declined significantly in recent

decades, the epidemic is far from over, and the true extent of excess mortality associated with this

epidemic remains difficult to assess to this day.
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TABLES AND FIGURES

Background mortality Incidence curve
𝛼𝑚 0, -0.4, -0.8 𝛼hiv 5, 7
𝛽𝑚 0.8, 1.1 𝛽hiv 3, 5

𝐻 0.08, 0.13
Fertility
(seronegative women) HIV settings
𝛼 𝑓 -0.35, 0.25 Treatments No, Slow, Rapid scale-up
𝛽 𝑓 0.85, 1.15 Reduced fert./vertical trans. Yes, No

Table 1 – Parameters used to set up the microsimulations

n 𝛽0 𝛽1 𝛽2 RMSE R2

0 1.0000 -0.0813 -0.0013 0.0015 0.8401
5 1.0000 -0.2296 0.0032 0.0031 0.8975

10 1.0000 -0.3594 0.0164 0.0042 0.9121
15 1.0000 -0.4672 0.0264 0.0048 0.9144
20 0.9999 -0.5200 0.0154 0.0053 0.9026
25 0.9999 -0.5500 0.0054 0.0056 0.8538
30 1.0000 -0.5550 0.0007 0.0065 0.6352

Table 2 – Coefficients for adjusting proportions of mothers surviving for HIV-related bias
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Pre-ART period Post-ART period
𝑛 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9

10 -0.2742 0.0010 1.2455 -0.2039 0.2609 -0.3532 0.0021 1.3030 -0.1336 -0.0017
15 -0.1488 0.0016 1.1053 -0.2611 0.3539 -0.2393 0.0026 1.1732 -0.1056 0.0183
20 -0.1123 0.0027 1.0387 -0.2747 0.3711 -0.1693 0.0031 1.0854 -0.1071 -0.0330
25 -0.1336 0.0047 1.0082 -0.2841 0.3386 -0.1559 0.0045 1.0442 -0.1866 -0.1147
30 -0.2051 0.0075 1.0078 -0.2701 0.2995 -0.1915 0.0069 1.0223 -0.2466 -0.0751
35 -0.3074 0.0113 1.0182 -0.2213 0.2649 -0.2708 0.0100 1.0241 -0.2220 -0.0228
40 -0.4580 0.0162 1.0530 -0.1323 0.1770 -0.3801 0.0136 1.0536 -0.1708 -0.0691
45 -0.6244 0.0215 1.1031 -0.0343 0.0671 -0.5119 0.0176 1.1132 -0.1318 -0.2382

Table 3 – Coefficients for converting proportions of mothers alive into life table survivorship in the presence
of HIV and ART
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Figure 1 – (a) Age patterns of non-AIDS mortality, (b) fertility schedules in the absence of HIV, (c) incidence
curves and, (d) trends in HIV prevalence
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Figure 2 – (a) Orphanhood prevalence in children aged 5-14 in one simulation resembling Zimbabwe and
in surveys and censuses from this country, (b) Adult mortality (35𝑞15) in females in the same simulation
set and in sibling histories from DHS from Zimbabwe, (c and e) Probabilities 10𝑞25 and 20𝑞25 estimated
from orphanhood in surveys and censuses from Zimbabwe and in the simulation resembling Zimbabwe,
compared to the simulated truth, (d and f) Median ratios of estimated to true odds of surviving across the
576 simulations with reduced fertility and vertical transmission
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Figure 5 – Comparison of probabilities 𝑛𝑞25 obtained from maternal orphanhood and WPP estimates using
two estimation approaches
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Figure 6 – Trends in the probabilities 10𝑞25 and 15𝑞25 using the new coefficients on surveys/censuses
reports, estimates from the World Population Prospects 2022 and sibling histories
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Appendix

Appendix A List of censuses conducted in Sub-Saharan Africa with or-
phanhood data

Western Africa 1970 1980 1990 2000 2010 2020
Benin 1979 1992 2002 2013
Burkina Faso 1975 1985 1996 2006 2019
Cabo Verde 1970 1980 1990 2000 2010 2021
Côte d’Iv. 1975 1988 1998 2014 2021(?)
Gambia 1973 1983 1993 2003 2013
Ghana 1970 1984 2000 2010 2021
Guinea 1983 1996 2014
Guinea-Bissau 1970 1979 1991 2009
Liberia 1974 1984 2008 2022
Mali 1976 1987 1998 2009 2022
Mauritania 1976 1988 2000 2013
Niger 1977 1988 2001 2012
Nigeria 1973 1991 2006
Senegal 1976 1988 2002 2013 2023
Sierra Leone 1974 1985 2004 2015 2021
Togo 1970 1981 2010 2022(?)

Middle Africa 1970 1980 1990 2000 2010 2020
Angola 1970 2014
Cameroon 1976 1987 2005
Central African Republic 1975 1988 2003
Chad 1989 1993 2009
Congo 1974 1984 1996 2007
DR of the Congo 1984
Equat. Guinea 1983 1994 2002 2015
Gabon 1970 1980 1993 2003 2013
Sao Tome and Principe 1981 1991 2012

Eastern Africa 1970 1980 1990 2000 2010 2020
Burundi 1979 1990 2008
Comoros 1980 1991 2003 2017
Djibouti 1983 2009
Eritrea 1984
Ethiopia 1984 1994 2007
Kenya 1979 1989 1999 2009 2019(?)
Madagascar 1975 1993 2018
Malawi 1977 1987 1998 2008 2018(?)
Mauritius 1972 1983 1990 2000 2011 2022
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Mozambique 1970 1980 1997 2007 2017(?)
Rwanda 1978 1991 2002 2012 2022
Seychelles 1971;1977 1987 1994 2002 2010 2022
Somalia 1975 1987
South Sudan 1973 1983 1993 2008
Uganda 1980 1991 2002 2014
United Republic of Tanzania 1978 1988 2002 2012 2022(?)
Zambia 1980 1990 2000 2010 2022(?)
Zimbabwe 1982 1992 2002 2012 2022

Southern Africa 1970 1980 1990 2000 2010 2020
Botswana 1971 1981 1991 2001 2011 2022
Eswatini 1976 1986 1997 2007 2017(?)
Lesotho 1976 1986 1996 2006 2016
Namibia 1970 1981 1991 2001 2011 2023(?)
South Africa 1980;1985 1991; 1996 2001 2011 2022(?)

Table S1 – Censuses conducted in Sub-Saharan Africa (censuses in which maternal orphanhood data were
collected are in bold)
Source: United Nations, Department of Economic and Social Affairs, Population Division 2021. Collected
Data: List of selected demographic topics collected in specific data sources by country or area, Available
from https://population.un.org/DataArchiveWeb/. Censuses for which it is unclear whether
orphanhood questions were asked are identified with a question mark.

https://population.un.org/DataArchiveWeb/
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Appendix B Coefficients used to convert proportions of surviving mothers
to survival probabilities

𝑛 𝛽0 𝛽1 𝛽2 𝑅2 𝐶𝑉

10 -0.2894 0.00125 1.2559 0.997 0.0015
15 -0.1718 0.00222 1.1123 0.996 0.0031
20 -0.1513 0.00372 1.0525 0.995 0.0058
25 -0.1808 0.00586 1.0267 0.993 0.0088
30 -0.2511 0.00885 1.0219 0.992 0.0126
35 -0.3644 0.01287 1.0380 0.992 0.0172
40 -0.5181 0.01795 1.0753 0.992 0.0222
45 -0.6880 0.02342 1.1276 0.993 0.0271
50 -0.8054 0.02721 1.1678 0.992 0.0400

Table S2 – Coefficients used to convert proportions of surviving mothers to survival probabilities - Sc:
Timæus (1992)

𝑛 𝛽0 𝛽1 𝛽2

10 -0.3611 0.00125 1.2974
15 -0.4030 0.00222 1.3732
20 -0.2120 0.00372 1.1342
25 -0.2389 0.00586 1.1131
30 -0.2513 0.00885 1.0223

Table S3 – Coefficients provided by Timæus and Nunn (1997) for converting proportions of surviving
mothers into survival probabilities in HIV/AIDS-disrupted settings
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Appendix C Parametrization and calibration of the microsimulations
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Figure S1 – Flow chart of population subgroups identified in the microsimulations to incorporate HIV/AIDS
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Figure S2 – Survival curves for infected individuals progressing from infection to clinical stage, then from
clinical stage to death, in the absence of treatment - Sc : Stover (2009)

To build the ART and PMTCT uptake scenarios, we examined treatment coverage in 16
countries where HIV prevalence reached at least 5%. We distinguished between two groups:
those where the maximum coverage of ART had reached 83% (9 countries), and those where it
remained lower (7 countries). Trends in ART coverage for these countries are presented in Figure
S3. A logistic growth curve fitted to these two sets of ART coverage trends helped to build the
first two scenarios: rapid and slow increases in ART take-up. For these same countries, another
logistic curve was fitted on PMTCT treatment coverage. This helps reflect the faster increase in
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PMTCT coverage and the time lag between the two curves. In addition to the scenarios with rapid
and slow scale-up of ART, a third scenario without any treatment was included.
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Figure S3 – ART and PMTCT treatment coverage trends in 16 sub-Saharan African countries where
prevalence has reached 5%.
Sc: UNAIDS estimates extracted from https://data.worldbank.org/

Women were randomly recruited to the subgroup on ART at the beginning of each 5-year
period, so as to achieve the desired coverage. To reflect the fact that historically pregnant women
identified at antenatal clinics tended to initiate ART before other women, we prioritized women
who were soon to give birth. Priority was given to women aged 15-49 who have reached the
clinical stage and for whom SOCSIM has scheduled a birth as the next event. Women who have
reached the clinical stage without a scheduled birth were second in the order of priority. They
were followed by HIV-positive women who have not yet reached the clinical stage but have a
birth scheduled in the next few months, and finally, other HIV-positive women aged 15-49, until
we reached the expected ART coverage. This procedure ensures that PMTCT coverage increases
faster than ART coverage.

https://data.worldbank.org/


46

0.05 0.10 0.20 0.50

0.
05

0.
10

0.
20

0.
50

(a) Mortality

5q0

35
q 1

5

DHS
Simulations

0.01 0.02 0.05 0.10 0.20

0.
01

0.
02

0.
05

0.
10

0.
20

(b) Orphanhood

1−5S5

1−
5S

10

DHS
Simulations
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Appendix D Ratios of unbiased to observed proportions of mothers surviv-
ing
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Figure S5 – Ratios of unbiased to observed proportions of mothers surviving, in simulations without
treatments (5𝑆𝑛/5𝑆

∗
𝑛, left panel), in all simulations with adjustments developed by Timæus and Nunn

(1997) (5𝑆𝑛/5𝑆
′
𝑛, middle panel) and with adjustments obtained through regression (5𝑆𝑛/5𝑆

′′
𝑛, right panel),

for three age groups (5-9, 10-14 and 15-19).
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Appendix E Median ratios of estimated to true odds of surviving in simu-
lations

Pre-HIV HIV epidemic
Year 192 197 202 207 212 217 222 227 232 237 242

Coeff.: Timæus (1992) - Time location: Brass and Bamgboye (1981)
10𝑝25 1.05 1.05 0.99 0.98 1.07 1.31 1.58 1.85 1.72 1.38 1.18
15𝑝25 1.02 1.01 0.98 0.94 0.98 1.12 1.41 1.77 1.68 1.35 1.18
20𝑝25 1.00 0.99 0.98 0.93 0.95 1.06 1.34 1.70 1.55 1.33
25𝑝25 1.00 0.99 0.97 0.94 0.97 1.07 1.33 1.61 1.41 1.23
30𝑝25 1.00 0.99 0.98 0.95 0.99 1.12 1.36 1.55 1.33 1.28
35𝑝25 1.00 0.99 0.99 0.96 1.01 1.17 1.38 1.51 1.26
40𝑝25 1.00 1.00 1.00 0.98 1.03 1.17 1.37 1.46 1.23
45𝑝25 1.00 1.00 1.01 1.01 1.06 1.19 1.36 1.46 1.28
Coeff.: Timæus and Nunn (1997) when HIV >= 5%, Timæus (1992) when HIV < 5%

Time location: Brass and Bamgboye (1981)
10𝑝25 1.05 1.05 0.99 0.98 1.07 1.15 0.97 1.04 0.90 0.69 0.59
15𝑝25 1.02 1.01 0.98 0.94 0.98 1.12 1.24 1.21 1.13 0.87 0.82
20𝑝25 1.00 0.99 0.98 0.93 0.95 1.06 1.34 1.51 1.22 0.95
25𝑝25 1.00 0.99 0.97 0.94 0.97 1.07 1.33 1.61 1.31 0.96
30𝑝25 1.00 0.99 0.98 0.95 0.99 1.12 1.36 1.55 1.33 1.32
35𝑝25 1.00 0.99 0.99 0.96 1.01 1.17 1.38 1.51 1.26
40𝑝25 1.00 1.00 1.00 0.98 1.03 1.17 1.37 1.46 1.23
45𝑝25 1.00 1.00 1.01 1.01 1.06 1.19 1.36 1.46 1.28

New coefficients on adjusted proportions
Time location: synthetic cohorts

10𝑝25 1.01 1.01 0.98 1.01 0.99 0.98 1.01 1.03 1.01 0.95 0.98
15𝑝25 1.00 1.00 0.99 1.03 1.01 0.98 0.99 1.04 1.02 0.95 1.00
20𝑝25 1.00 1.00 1.00 1.03 1.02 0.98 0.98 1.04 1.02 0.99 0.99
25𝑝25 1.00 0.99 1.00 1.02 1.01 0.99 0.98 1.03 1.02 1.00 1.00
30𝑝25 1.00 1.00 1.01 1.02 1.00 0.99 0.98 1.03 1.01 1.00 1.00
35𝑝25 1.00 1.00 1.01 1.02 1.00 0.99 0.98 1.03 1.01 0.99 0.99
40𝑝25 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.02 1.01 0.99 0.99
45𝑝25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.01 1.00 0.99

Table S4 – Median ratios of estimated to true odds of surviving in simulations with vertical transmission
and reduced fertility
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Appendix F Prediction errors for models to correct bias in proportions

Model performance was evaluated using the root-mean-square error, and the maximum and
minimum values of the median ratio of the estimated to the true odds of surviving. These metrics
were first computed in a sample of 80% of all simulations, which served to obtain the coefficients.
Then out-of-sample metrics were calculated based on values predicted from these coefficients in
the remaining simulations.

0-4 (n =5) 5-9 (n =10) 10-14 (n =15)
RMSE in-sample out-of-sample in-sample out-of-sample in-sample out-of-sample

Model 1 0.00206 0.00207 0.00639 0.00667 0.01141 0.01038
Model 2 0.00186 0.00186 0.00429 0.00445 0.00555 0.00529
Model 3 0.00158 0.00157 0.00332 0.00346 0.00445 0.00418
Model 4 0.00157 0.00155 0.00333 0.00351 0.00465 0.00441
Model 5 0.00156 0.00155 0.00327 0.00343 0.00431 0.00406
Model 6 0.00148 0.00147 0.00309 0.00333 0.00462 0.00439
Model 7 0.00147 0.00146 0.00306 0.00330 0.00420 0.00399

15-19 (n =20) 20-24 (n =25) 25-29 (n =30)
RMSE in-sample out-of-sample in-sample out-of-sample in-sample out-of-sample

Model 1 0.01508 0.01419 0.01653 0.01460 0.01446 0.01471
Model 2 0.00548 0.00562 0.00552 0.00531 0.00574 0.00534
Model 3 0.00481 0.00496 0.00530 0.00515 0.00571 0.00535
Model 4 0.00548 0.00562 0.00552 0.00531 0.00574 0.00534
Model 5 0.00481 0.00496 0.00530 0.00515 0.00571 0.00535
Model 6 0.00548 0.00562 0.00552 0.00531 0.00574 0.00534
Model 7 0.00481 0.00496 0.00530 0.00515 0.00571 0.00535

30-34 (n =35) 35-39 (n =40) 40-44 (n =45)
RMSE in-sample out-of-sample in-sample out-of-sample in-sample out-of-sample

Model 1 0.01088 0.00996 0.00854 0.00917 0.01023 0.01005
Model 2 0.00652 0.00634 0.00782 0.00850 0.01023 0.01004
Model 3 0.00652 0.00634 0.00782 0.00849 0.01023 0.01004
Model 4 0.00652 0.00634 0.00782 0.00850 0.01023 0.01004
Model 5 0.00652 0.00634 0.00782 0.00849 0.01023 0.01004
Model 6 0.00652 0.00634 0.00782 0.00850 0.01023 0.01004
Model 7 0.00652 0.00634 0.00782 0.00849 0.01023 0.01004

Table S5 – Prediction errors for candidate models for bias in proportions of mothers surviving
Model 1: 5𝑆𝑛

5𝑆
∗
𝑛
∼ 𝛽0 + 𝛽1 𝐻𝐼𝑉𝑡

Model 2: 5𝑆𝑛
5𝑆

∗
𝑛
∼ 𝛽0 + 𝛽1 𝐻𝐼𝑉𝑡−𝑛+2.5

Model 3: 5𝑆𝑛
5𝑆

∗
𝑛
∼ 𝛽0 + 𝛽1 𝐻𝐼𝑉𝑡−𝑛+2.5 + 𝛽2 𝐴𝑅𝑇𝑡−𝑛+2.5

Model 4: 5𝑆𝑛
5𝑆

∗
𝑛
∼ 𝛽0 + 𝛽1 𝐻𝐼𝑉𝑡−𝑛+2.5 + 𝛽2 𝑃𝑀𝑇𝐶𝑇𝑡−𝑛+2.5

Model 5: 5𝑆𝑛
5𝑆

∗
𝑛
∼ 𝛽0 + 𝛽1 𝐻𝐼𝑉𝑡−𝑛+2.5 + 𝛽2 𝑃𝑀𝑇𝐶𝑇𝑡−𝑛+2.5 + 𝛽3 𝐴𝑅𝑇𝑡−𝑛+2.5

Model 6: 5𝑆𝑛
5𝑆

∗
𝑛
∼ 𝛽0 + 𝛽1 [ 𝐻𝐼𝑉𝑡−𝑛+2.5 × (1 − 𝑃𝑀𝑇𝐶𝑇𝑡−𝑛+2.5)]

Model 7: 5𝑆𝑛
5𝑆

∗
𝑛
∼ 𝛽0 + 𝛽1 [ 𝐻𝐼𝑉𝑡−𝑛+2.5 × (1 − 𝑃𝑀𝑇𝐶𝑇𝑡−𝑛+2.5) ] + 𝛽2 𝐴𝑅𝑇𝑡
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Appendix G Prediction errors for models to convert proportions into life
table survivorship probabilities

Model performance was again evaluated using the root-mean-square error, and the maximum and
minimum values of the median ratio of the estimated to the true odds of surviving.

5-9 (n =10) In-sample Out-of-sample
RMSE Max ratio Min ratio RMSE Max ratio Min ratio

Model 1 0.0110 1.1265 0.9063 0.0111 1.1236 0.9030
Model 2 0.0100 1.0781 0.8598 0.0101 1.0858 0.8635
Model 3 0.0090 1.0421 0.9226 0.0089 1.0449 0.9354
Model 4 0.0087 1.0555 0.9576 0.0087 1.0514 0.9570
Model 5 0.0100 1.0786 0.8609 0.0100 1.0884 0.8629
Model 6 0.0097 1.0825 0.8983 0.0097 1.0894 0.8979
Model 7 0.0093 1.0598 0.8724 0.0092 1.0679 0.8758
Model 8 0.0099 1.0682 0.8530 0.0099 1.0773 0.8536
Model 9 0.0086 1.0346 0.9475 0.0086 1.0352 0.9505

10-14 (n =15) In-sample Out-of-sample
RMSE Max ratio Min ratio RMSE Max ratio Min ratio

Model 1 0.0134 1.1330 0.9272 0.0137 1.1125 0.9194
Model 2 0.0121 1.0852 0.8862 0.0125 1.0789 0.8809
Model 3 0.0108 1.0630 0.9172 0.0110 1.0548 0.9113
Model 4 0.0103 1.0621 0.9718 0.0105 1.0574 0.9692
Model 5 0.0120 1.0819 0.8828 0.0124 1.0725 0.8763
Model 6 0.0116 1.0804 0.9199 0.0121 1.0701 0.9116
Model 7 0.0108 1.0610 0.9002 0.0110 1.0525 0.8867
Model 8 0.0119 1.0763 0.8786 0.0123 1.0653 0.8732
Model 9 0.0100 1.0414 0.9547 0.0103 1.0365 0.9457

15-19 (n =20) In-sample Out-of-sample
RMSE Max ratio Min ratio RMSE Max ratio Min ratio

Model 1 0.0150 1.1276 0.9499 0.0148 1.1300 0.9443
Model 2 0.0134 1.0843 0.9087 0.0136 1.0878 0.8931
Model 3 0.0128 1.0875 0.9160 0.0131 1.0848 0.9027
Model 4 0.0117 1.0584 0.9792 0.0120 1.0591 0.9583
Model 5 0.0133 1.0810 0.9061 0.0135 1.0844 0.8895
Model 6 0.0130 1.0770 0.9321 0.0133 1.0800 0.9284
Model 7 0.0120 1.0610 0.9390 0.0123 1.0612 0.9544
Model 8 0.0132 1.0742 0.9033 0.0134 1.0783 0.8875
Model 9 0.0113 1.0410 0.9806 0.0115 1.0402 0.9582

20-24 (n =25) In-sample Out-of-sample
RMSE Max ratio Min ratio RMSE Max ratio Min ratio

Model 1 0.0168 1.1311 0.9670 0.0168 1.1446 0.9567
Model 2 0.0147 1.0752 0.9289 0.0148 1.0762 0.9143
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Model 3 0.0144 1.0792 0.9309 0.0144 1.0800 0.9163
Model 4 0.0135 1.0520 0.9698 0.0135 1.0460 0.9535
Model 5 0.0147 1.0776 0.9288 0.0148 1.0771 0.9155
Model 6 0.0144 1.0730 0.9484 0.0146 1.0695 0.9455
Model 7 0.0139 1.0597 0.9562 0.0140 1.0583 0.9479
Model 8 0.0145 1.0686 0.9217 0.0146 1.0676 0.9081
Model 9 0.0131 1.0363 0.9706 0.0131 1.0272 0.9541

25-29 (n =30) In-sample Out-of-sample
RMSE Max ratio Min ratio RMSE Max ratio Min ratio

Model 1 0.0190 1.1283 0.9713 0.0189 1.1299 0.9638
Model 2 0.0167 1.0667 0.9400 0.0168 1.0697 0.9376
Model 3 0.0165 1.0668 0.9401 0.0166 1.0688 0.9398
Model 4 0.0158 1.0437 0.9780 0.0159 1.0374 0.9789
Model 5 0.0167 1.0678 0.9411 0.0168 1.0697 0.9409
Model 6 0.0165 1.0615 0.9533 0.0167 1.0597 0.9538
Model 7 0.0161 1.0500 0.9606 0.0163 1.0474 0.9497
Model 8 0.0166 1.0603 0.9366 0.0167 1.0621 0.9377
Model 9 0.0156 1.0354 0.9790 0.0157 1.0317 0.9797

30-34 (n =35) In-sample Out-of-sample
RMSE Max ratio Min ratio RMSE Max ratio Min ratio

Model 1 0.0209 1.1168 0.9748 0.0204 1.1032 0.9644
Model 2 0.0192 1.0527 0.9483 0.0188 1.0484 0.9374
Model 3 0.0192 1.0519 0.9480 0.0188 1.0477 0.9360
Model 4 0.0186 1.0348 0.9891 0.0182 1.0227 0.9736
Model 5 0.0192 1.0529 0.9488 0.0189 1.0479 0.9360
Model 6 0.0192 1.0486 0.9557 0.0188 1.0484 0.9438
Model 7 0.0187 1.0411 0.9672 0.0184 1.0288 0.9651
Model 8 0.0192 1.0502 0.9475 0.0188 1.0467 0.9355
Model 9 0.0185 1.0309 0.9855 0.0181 1.0139 0.9752

35-39 (n =40) In-sample Out-of-sample
RMSE Max ratio Min ratio RMSE Max ratio Min ratio

Model 1 0.0220 1.0734 0.9717 0.0229 1.0821 0.9701
Model 2 0.0214 1.0348 0.9654 0.0221 1.0302 0.9668
Model 3 0.0214 1.0346 0.9654 0.0221 1.0300 0.9667
Model 4 0.0212 1.0245 0.9873 0.0218 1.0310 0.9775
Model 5 0.0214 1.0369 0.9672 0.0221 1.0313 0.9688
Model 6 0.0214 1.0367 0.9685 0.0221 1.0282 0.9727
Model 7 0.0213 1.0323 0.9634 0.0219 1.0353 0.9682
Model 8 0.0214 1.0331 0.9654 0.0220 1.0312 0.9646
Model 9 0.0211 1.0217 0.9880 0.0217 1.0296 0.9786

40-44 (n =45) In-sample Out-of-sample
RMSE Max ratio Min ratio RMSE Max ratio Min ratio

Model 1 0.0240 1.0416 0.9574 0.0240 1.0363 0.9305
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Model 2 0.0238 1.0314 0.9860 0.0237 1.0259 0.9709
Model 3 0.0238 1.0316 0.9860 0.0237 1.0258 0.9708
Model 4 0.0238 1.0320 0.9858 0.0237 1.0298 0.9709
Model 5 0.0240 1.0344 0.9571 0.0240 1.0294 0.9295
Model 6 0.0240 1.0361 0.9581 0.0239 1.0263 0.9299
Model 7 0.0240 1.0349 0.9562 0.0240 1.0298 0.9292
Model 8 0.0238 1.0288 0.9848 0.0237 1.0247 0.9693
Model 9 0.0237 1.0317 0.9902 0.0236 1.0267 0.9692

Table S6 – Prediction errors for candidate models for converting proportions of mothers surviving into
survival probabilities
Model 1: 𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5
Model 2: 𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽3 𝐻𝐼𝑉𝑡 + 𝛽4 𝐴𝑅𝑇𝑡
Model 3: 𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5+ 𝛽3 𝐻𝐼𝑉𝑡 + 𝛽4 𝐴𝑅𝑇𝑡 + 𝛽5 𝐻𝐼𝑉𝑡−𝑛+2.5+ 𝛽6 𝐴𝑅𝑇𝑡−𝑛+2.5
Model 4: 𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽3 𝐻𝐼𝑉𝑡 + 𝛽4 𝐴𝑅𝑇𝑡 + 𝛽5 Δ𝐻𝐼𝑉 + 𝛽6 Δ𝐴𝑅𝑇

Model 5: 𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽3 [𝐻𝐼𝑉𝑡 × (1 − 𝐴𝑅𝑇𝑡 )]
Model 6: 𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5 × [𝐻𝐼𝑉𝑡 × (1 − 𝐴𝑅𝑇𝑡 )]
Model 7: 𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽3 [𝐻𝐼𝑉𝑡 × (1− 𝐴𝑅𝑇𝑡 )] + 𝛽4 Δ[𝐻𝐼𝑉 × (1− 𝐴𝑅𝑇)]
Model 8 (two equations):
{𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽3 𝐻𝐼𝑉𝑡 } (𝐴𝑅𝑇𝑡 = 0)
{𝑛𝑝25 = 𝛽4(𝑛) + 𝛽5(𝑛) 𝑀 + 𝛽6(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽7 [𝐻𝐼𝑉𝑡 × (1 − 𝐴𝑅𝑇𝑡 )]} (𝐴𝑅𝑇𝑡 > 0)
Model 9 (two equations):
{𝑛𝑝25 = 𝛽0(𝑛) + 𝛽1(𝑛) 𝑀 + 𝛽2(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽3 𝐻𝐼𝑉𝑡 + 𝛽4 Δ𝐻𝐼𝑉} (𝐴𝑅𝑇𝑡 = 0)
{𝑛𝑝25 = 𝛽5(𝑛) + 𝛽6(𝑛) 𝑀 + 𝛽7(𝑛) 5𝑆(ℎ)𝑛−5 + 𝛽8 [𝐻𝐼𝑉𝑡 × (1 − 𝐴𝑅𝑇𝑡 )] + 𝛽9 Δ[𝐻𝐼𝑉 × (1 − 𝐴𝑅𝑇)]} (𝐴𝑅𝑇𝑡 >
0)
where
𝐻𝐼𝑉𝑡 or 𝐴𝑅𝑇𝑡 = HIV prevalence or ART coverage at the time of data collection (obtained as the average
of estimates from each survey as we use two series to construct the synthetic proportion)
𝐻𝐼𝑉𝑡−𝑛+2.5 or 𝐴𝑅𝑇𝑡−𝑛+2.5 = HIV prevalence or ART coverage at the time of birth (average of estimates
from each survey)
Δ HIV or Δ ART = difference between the two surveys in HIV prevalence or ART coverage at the time of
data collection
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Appendix H Data sources on maternal orphanhood prevalence

Proportions of orphans by age were calculated based on microdata in the IPUMS database, DHS
and MICS, based on census reports available online, and on the DemoData database of the United
Nations Population Division:

• Minnesota Population Center. Integrated Public Use Microdata Series, International: Ver-
sion 7.3 [dataset]. Minneapolis, MN: IPUMS, 2020. https://doi.org/10.18128/D020.V7.3

• ICF. 2004-2017. Demographic and Health Surveys (various) [Datasets]. Funded by USAID.
Rockville, Maryland: ICF [Distributor].

• Anna Bolgrien, Elizabeth Heger Boyle, Matthew Sobek, and Miriam King. IPUMS MICS
Data Harmonization Code. Version 1.1 [Stata syntax]. IPUMS: Minneapolis, MN. , 2024.
https://doi.org/10.18128/D082.V1.1

• United Nations DemoData: https://popdiv.dfs.un.org/DemoData/web/ - see Gerland, P.
(2023, December). What’s Beneath the Future: World Population Prospects. In Semaine
Data-SHS, Dec 2023, Aix-en-Provence, France.

When the data could be disaggregated by gender of the respondent, we retained the proportions
of surviving mothers computed from female respondents, as they were on average lower than in
reports from males, possibly due to some age exaggeration in men (Ewbank 1981).

The mean age at childbearing was calculated based on the World Population Prospects to have
time-varying estimates (United Nations 2022).
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Botswana 1971 Census, 2001 Census, 2007 Family Health Survey (MICS), 2011 Census, 2017
Survey

Cameroon 1960-1965 Enquête Démographique, 1978 World Fertility Survey, 1987 Census, 1991
DHS, 1998 DHS, 2000 MICS, 2004 DHS, 2005 Census, 2006 MICS, 2011 DHS, 2014
MICS, 2018 DHS

Central African Rep. 1988 Census, 1994-1995 DHS, 2000 MICS, 2006 MICS, 2010 MICS, 2018-2019 MICS
Côte d Ivoire 1978-1979 Enquête démographique à passages répétés, 1988 Census, 1994 DHS, 1998

Census, 2000 MICS, 2005 AIS, 2006 MICS, 2011-2012 DHS, 2016 MICS, 2021 DHS
Eswatini 1976 Census, 1986 Census, 1997 Census, 2000 MICS, 2006-2007 DHS, 2007 Census,

2010 MICS, 2014 MICS, 2021-2022 MICS
Kenya 1969 Census, 1973 Demographic Baseline Survey, 1977 National Demographic Survey,

1979 Census, 1983 National Demographic Survey, 1989 Census, 1993 DHS, 1998 DHS,
1999 Census, 2000 MICS, 2003 DHS, 2009 Census, 2014 DHS, 2022 DHS

Lesotho 1971-1973 Demographic Survey, 1976 Census, 1977 WFS, 1986 Census, 2000 MICS,
2001 Demographic Survey, 2004 DHS, 2006 Census, 2009 DHS, 2014 DHS, 2016 Census,
2018 MICS

Malawi 1966 Census, 1970-1972 Population Change Survey, 1977 Census, 1982 Demographic
Survey, 1992 DHS, 1998 Census, 2000 DHS, 2004 DHS, 2006 MICS, 2008 Census, 2010
DHS, 2013-2014 MICS, 2015-2016 DHS, 2019-2020 MICS

Mozambique 1997 DHS, 1997 Census, 2003 DHS, 2007 Census, 2008 MICS, 2009 HIV-AIDS Indicator
Survey, 2011 DHS, 2015 HIV-AIDS Indicator Survey

Namibia 1992 DHS, 2000 DHS, 2001 Census, 2006-2007 DHS, 2013 DHS
Rwanda 1991 Census, 1992 DHS, 1996 Socio-demographic Survey, 2000 DHS, 2000 MICS, 2002

Census, 2005 DHS, 2010 DHS, 2012 Census, 2014-2015 DHS, 2019 DHS
South Africa 1996 Census, 1998 DHS, 2001 Census, 2007 Community Survey, 2011 Census, 2016

Community Survey, 2016 DHS
Tanzania 1973 National Demographic Survey, 1978 Census, 1988 Census, 1991-1992 DHS, 1996

DHS, 1999 Reproductive and Child Health Survey, 2002 Census, 2003-2004 AIS, 2004-
2005 DHS, 2007-2008 AIS/MIS, 2010 DHS, 2011 HIV-AIDS Indicator Survey, 2012
Census, 2015-2016 DHS, 2022 DHS

Uganda 1969 Census, 1988-1989 DHS, 1991 Census, 1995 DHS, 2000-2001 DHS, 2002 Census,
2006 DHS, 2011 DHS, 2014 Census, 2016 DHS

Zambia 1992 DHS, 1996 DHS, 1999 MICS, 2001-2002 DHS, 2007 DHS, 2010 Census, 2013-
2014 DHS, 2018 DHS

Zimbabwe 1982 Census, 1992 Census, 1994 DHS, 1997 Inter-Censal Demographic Survey, 1999
DHS, 2002 Census, 2005-2006 DHS, 2009 MICS, 2010-2011 DHS, 2012 Census, 2014
MICS, 2015 DHS, 2019 MICS

Table S7 – Data sources on maternal orphanhood prevalence used in this study



55

Appendix I Trends in the probabilities 10𝑞25 based on orphanhood, using
coefficients from Timæus and Nunn (1997)
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Figure S6 – Trends in the probabilities 10𝑞25 based on orphanhood, using coefficients from Timæus and
Nunn (1997) when HIV >= 5% and Timæus (1992) when HIV < 5%, from a single survey or census,
estimates from WPP and sibling histories
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