
What is git?



Git is version control.

Additionally:

I Content tracker
I Collaboration tool
I Notekeeping system
I (Backup - if used correctly)



This session:

I Git
I Concepts
I Set up a repository
I Add (“track”) files
I Change files
I Branches
I Merging

I GitHub
I Set up a repository
I Push, pull



caveat emptor

Git is both very simple and very complicated.

But it is only as complicated as you need it to be.



Distinction: Git vs GitHub

Git
The core software which actually creates and maintains repositories
Fundamentally a command line tool with a very rudimentary GUI.
Lots and lots of third party graphical interfaces.
I Suggested: SmartGit, GitHub Desktop, RStudio
I Others: TortoiseGit, Tower, SourceTree, GitKraken
I List: https://git-scm.com/downloads/guis/

NB: Many of the GUIs simplify interacting with GitHub



Distinction: Git vs GitHub

GitHub
An online service to store your repositories, collaborate with others
and various other ‘value added’ services.
Needs an account to use.
Alternatives: BitBucket, GitLab, self-hosted
It is perfectly possible and reasonable to use Git without
using GitHub
I But for simplicity. . . use GitHub.
I NB: GitHub operates a student programme where ‘premium’

features and extras available for students for free for a year or
so.



Git basics

I Fundamentally, git creates and stores snapshots of files and
folders.

I Git must be told to track files as you add them.
I Adding new files is a two step process, involving (1) staging

and (2) committing.



Git basics 2

I When you delete a file, git notes it this: you will no longer see
it in your folders. But previous versions of the file live in gits
repository.

I Everything is stored in the .git folder - normally hidden in
Explorer/Finder.



Aside: hidden files

I Mac: Cmd+Shift+Dot to view hidden files
I Windows:

1. Open File Explorer from the taskbar.
2. Select View > Options > Change folder and search options.
3. Select the View tab and, in Advanced settings, select Show

hidden files, folders, and drives and OK.



Some concepts

Git ‘thinks’ in terms of 3 ‘trees’ (fancy word for directory structures)

I working directory : what you see when you open
Explorer/Finder and look at your project folder.

I index : a.k.a staging area - an ‘intermediate’ area where
changes are stored before committing.

I HEAD : this points to the last/current commit*.

All comparisons related to files - e.g. whether a file exists, deleted,
changed - are done between these three trees.

Unless you actively make it git will never permanently delete
anything which has been committed (great safety feature!)



Chacon S. Pro Git. Second edition. New York, NY: Apress; 2014.
426 p. URL: https://git-scm.com/book/en/v2



Some terminology

I stage : add new files, or changes to already tracked files, to
the staging area (aka index) - an intermediate step.

I commit :
I verb: add new files/changes to the history - create a ‘snapshot’.
I noun: a previous ‘snapshot’ in history.



NB: add and stage are interchangeable. stage more common in
GUIs.



[Walkthrough 1]

My First Commit: Initialising a repository and adding a file



[Walkthrough 2]

Be The Change You Want To Be: Making Changes and Storing
Them



The commit history

I The commit history is a list of all the commits, in order, of a
given branch.

I Command: git log

I But most GUIs will show you a tree visually, which is easier to
follow.



Undoing changes - git revert, git reset

I The key benefit of version control is the ability to undo
changes - rollback in time.

I But this requires more thought than at first glance.



! Git Revert Doesn’t Do What You Think !

I When you git revert you don’t go backwards. Instead, you
go forwards by making an inverse commit to where you want to
go.
I Consider this in terms of snapshots and keeping all the

snapshots. Going backwards means losing snapshots.
I Going forwards making an inverse commit keeps the

intermediate snapshots.
I Often a source of confusion.



git revert

Consider:

Commit A: Files +a, +b, +c ====> Result: Files a, b, c

Commit B: Files +d, +e, changes a' ====> Result: Files a', b,
c, d, e

[revert!]

Commit C: Files -a', -d, -e ====> Result: Files a, b, c

If you ever need to, you can revert to commit B. Files d and e are
in the history as well



Reset

I git reset : this resets the working directory OR index back
to their last state.

I This is probably what you want most of the time - used to
undo changes/adding files into the index.

I git restore filename : this will restore the last committed
version of the file into the working directory.



[Walkthrough 3]

Back to the Future



Git Branches

I A branch is a parallel workstream.
I Think of having a multiple working directories, each having

independent work done on it.
I Useful for:

I Collaboration - so multiple people can work on aspects of a
project without messing with the ‘master’ copy.

I Testing - quickly test a new bit of code/work, pause it, return
to master, carry on, go back to new code etc.



Jens Lechtenbörger https://oer.gitlab.io/oer-on-oer-
infrastructure/Git-introduction.html#/sec-title-slide



Jens Lechtenbörger https://oer.gitlab.io/oer-on-oer-
infrastructure/Git-introduction.html#/sec-title-slide



Git branching commands

I git branch branchname - create a new branch called
branchname

I git checkout branchname - switch to branchname
I New versions of git: also use git switch branchname

I git checkout -b branchname - shorthand for “create new
branch branchname then switch to it”.



[Walkthrough 4]



Remotes!

i.e. GitHub



Git can store repositories in so called ‘remotes’.

I A remote is just another location containing a copy of the .git
folder.

I Can be another folder on your computer, a network drive,
service such as GitHub.

I But your local copy must be told where the remote is.
I This is a bit confusing how to do, I think.

I Recommend: create the empty repository remotely (on GitHub)
first. THEN clone the empty repository to your computer.
That was the “remote” related information is already set up.

NB You need to have a GitHub account



Pull

I Bring in any changes in the remote repository and merge them
into the local one.

I Commands:
I git pull
I The very first time you want to copy a remote repository: git

clone



Push

I Send your committed changes up into the remote repository
I Commands:

I git push



[Walkthrough 5]

Tug o’ War



Merging

I Two common scenarios:
I You’ve made some changes in Branch-B, but would like to

merge them back in to Branch-A.
I You’ve been working on your working directory and made some

commits. However, meanwhile, Person-B else has committed
some other changes to the repository on GitHub. You need to
merge your and Person-B’s changes.



Merging 2

I git merge operates on commits NOT individual files - endless
source of frustration for me.

I Merging happens from the POV of the receiving (destination)
branch/commit.

I All the changes from the source are brought into the
destination.



Jens Lechtenbörger https://oer.gitlab.io/oer-on-oer-
infrastructure/Git-introduction.html#/sec-title-slide



[Walkthrough 6]

Merging lanes



Wrap up

I Use Git
I Learning curve but will repay itself many times over.
I Good research practice - keeping records.



Other useful topics

I Rebase - changing history
I Bisect - made a mistake, now find the bug?
I Git hooks - before every commit, do X. Or before push/pull, do

Y etc
I Worktrees - multiple branches of same repository in different

folders
I Cherry-pick - did a thing in branchB, want it in branchA but

only that very specific thing, not all the history of branchB



Other Resources
I Git:

I https://git-scm.org/ [NB GitHub Desktop will install Git itself
on your computer]

I Tutorials:
I http://learngitbranching.js.org - highly recommended, not just

about branching
I https://rogerdudler.github.io/git-guide/ - a simple introduction
I https://www.atlassian.com/git/tutorials - a series of fairly

detailed (but comprehensive) tutorials
I https://git-rebase.io/ - how to change history with git rebase
I https://github.com/jlord/git-it-electron - Git-it app to teach

you git
I https://try.github.io/ - various things from GitHub
I https://marklodato.github.io/visual-git-guide/index-en.html - A

visual git reference
I https://gitimmersion.com/ - another tutorial, needs a Ruby

interpreter installed

http://learngitbranching.js.org


Other Resources

I Reference/Resources:
I https://git-scm.com/docs - Git Reference Manual
I https://git-scm.com/book/en/v2 - Git Reference Book
I https://www.atlassian.com/git/tutorials/atlassian-git-

cheatsheet - Quick
reference

I Deep dive:
I https://wyag.thb.lt/ - Write Yourself A Git [rewrite the entire

core git program from scratch]
I https://hackernoon.com/https-medium-com-zspajich-

understanding-git-data-model-95eb16cc99f5 - an easy to read
but very useful set of articles on git internals.

I https://www.sbf5.com/~cduan/technical/git/ - Conceptual
understanding



Other Resources

I Other VCS: SVN, Mercurial, Pijul, Fossil, DARCS, Bazaar

I SUGAR - these are like ‘simplified’ wrappers on top of Git:
I https://gitless.com
I https://frostming.github.io/legit/

I Misc:
I https://keepachangelog.com/en/1.0.0/ - discretizing your work

and good commit messages
I https://www.conventionalcommits.org/en/v1.0.0/ - a

framework for good commit messages


