This script extracts the ERA5-Land daily mean temperature (deg Kelvin)
from Google Earth Eng (GEE)
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR

Task : Using sample coordinates of locations (from excel file),
extract the time series of the required variable for a user
defined period 01/01/2021 to 31/12/2022.
If your time series is longer, or you have more locations, GEE can give
an error related to timeout as the requested data is quite big. The script
can be adapted to use a for loop to download/extract and combine a longer
time series of data.

Required variables for this exercise from ERA5-Land:
mean 2m temperature [in deg C]

The corresponding variables on GEE can be found in band section are:
temperature_2m [deg K]

A full list of variables can be found on the dataset page
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR

Last updated 27-Sept-2023 - @Author: Malcolm N. Mistry

Install and load required packages. For installation of rgee,
see https://github.com/r-spatial/rgee and run the script_configure_rgee.R

Install required packages before loading
library(sf) # Simple Features for R (Main geo-spatial package) https://r-spatial.github.io/sf/
library(terra) # Another handy package for raster/vector data, though not used here
library(mapview) # For plotting interactive maps
library(geodata) # To download country shape files with different admin (regions) boundaries
library(readxl) # To read excel sheet
library(tidyr) # Data cleaning, tidying
library(dplyr) # Data cleaning, tidying
library(tictoc) # To time the operation
library(rgee) # For working with GEE API

Or
pacman::p_load(sf, tidyr, tictoc, dplyr,
mapview, readxl, geodata, rgee)

ee_check() # check if RGEE works correctly

Use your gmail account!! Below is my unive.it account which provides access to google drive.
ee_Initialize("malcolm.mistry@unive.it", drive = TRUE, gcs = FALSE)

Set path to input directory containing the excel file (locns) and
output directory where the final RDS files for each variable will be saved.

input_dir <- '/home/lshmm22/Projects/RGEE/input_data/'

setwd(input_dir)

Select the required ERA5-Land variable (see The image collection info on GEE page)
req_variable <- "temperature_2m"

sample_locns <- read_excel("R_users_group_seminar_29Sept2023_sample_locns.xlsx",
 sheet = "locns")

head(sample_locns)

To use the location coordinates for extracting climate data, we need
to convert the coordinates to spatial object (here vector)
Many ways to do it in R. Recommended way is to use package 'sf'.
Note how we retain the 'location' column as well.

First, we need to define a Projection/CRS
Recall that the Earth is NOT FLAT !! Actually, it is not a perfect sphere either!

proj_crs <- "+proj=lonlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
proj_crs <- 4326

sample_locns_sf <- st_as_sf(x = sample_locns,
 coords = c("lon", "lat"),
 crs = proj_crs)

mapview::mapview(sample_locns_sf, legend = FALSE)

Next step is important!
Move that geometry from local to earth engine.
ee_sample_locns_sf <- sf_as_ee(sample_locns_sf)

Define parameters that will be used for extracting data from GEE

start_year <- 2021
end_year <- 2022

startDate <- paste0(as.character(start_year),"-01-01", sep='') ## format 2018-01-01

to ensure that last date 31st Dec is included, use last date
as endDate+1-01-01 (i.e., the 1st of Jan of the following year)
endDate <- paste0(as.character(end_year+1),"-01-01", sep='')

print(paste('Start date is: ', startDate))
print(paste('End date is: ', endDate))

Load (Import) ERA5-Land ImageCollection
Change from image collection to image. You can make use of the
of the $ syntax instead of the piping operator %>% (both work)

era5_land_image_collection <- ee$ImageCollection("ECMWF/ERA5_LAND/DAILY_RAW")$
 filterDate(startDate, endDate)

OR
era5_land_image_collection <- ee$ImageCollection("ECMWF/ERA5_LAND/DAILY_RAW") %>%
ee$ImageCollection$filterDate(startDate, endDate)

Print information about the image collection
takes a few seconds to print the output
ee_print(era5_land_image_collection)

era5_land_image_tmean <- era5_land_image_collection$select("temperature_2m")

Print information about the image (takes a few seconds to print the output)
ee_print(era5_land_image_tmean)

Calculate the nominal scale in meters. This is the native spatial res of
ERA5-Land and will be used as a parameter later in the below function call
era5_land_res <- era5_land_image_tmean$first()$projection()$nominalScale()$getInfo()

Or easier way, go to https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR#description
and see under the tab 'Band'
era5_land_res <- 11132

Extract using ee_extract. Note that the function requires another argument
'fun' (see documentation). Here we choose mean, but in principal, the mean
will do nothing because for each point location the ee_extract will end up
extracting only a single grid-cell value over which the location coordinate
falls. Using the 'era5_land_res' as scale argument ensures that the native
res of era5-land is not changed while extracting the locations' time series

tic()
tmean_era5_land_df <- ee_extract(x = era5_land_image_tmean,
 y = ee_sample_locns_sf,
 fun = ee$Reducer$mean(),
 scale = era5_land_res,
 sf=FALSE)
toc() # Approx 2-3 mins

Notice that the number of features is 4. Why?

Because we have 4 locations in our data, so GEE considers these
4 coordinates (sf points) as features

class(tmean_era5_land_df)

Set colnames to correspond to the dates (as X_yymmdd or as required)
col_names <- sprintf("X%02s", seq(from=as.Date(paste0(start_year,"/01/01", sep="")),
 to=as.Date(paste0(end_year,"/12/31", sep="")),
 by = "day"))

col_names <- gsub("-", "", col_names, fixed=TRUE)

col_names

colnames(tmean_era5_land_df)[2:ncol(tmean_era5_land_df)] <- col_names

Now we need to reshape from wide to long format so that the rows in each DF
are the timeseries (variable value in each day),
and the columns are the locations.
This will then help to combine the DFs using rowbind.

tmean_era5_land_df <- tidyr::gather(tmean_era5_land_df,
 date, value, c(2:ncol(tmean_era5_land_df)),
 factor_key=TRUE)

Sort by locations and round the mean temperature to two signif digits.
tmean_era5_land_df <- tmean_era5_land_df %>% dplyr::arrange(location)

The variable is near-surface daily mean Temperature in degrees Kelvin.
Convert from deg K to deg C. And round it to two significant digits
tmean_era5_land_df$value <- tmean_era5_land_df$value - 273.15
tmean_era5_land_df$value <- round(tmean_era5_land_df$value, digits = 2)

Or in one line
tmean_era5_land_df$value <- round(tmean_era5_land_df$value - 273.15,
digits = 2)

Rename the third column
names(tmean_era5_land_df)[3] <- c('tmean_degC')

Confirm no missing records
apply(is.na(tmean_era5_land_df), 2, which)

Change date column to yyyy-mm-dd format and class date.
tmean_era5_land_df$date <- sub('.', '', tmean_era5_land_df$date)

Convert the character string (date column) to date format. The format
argument is that of the input not the ouput. Since the input column is
20210101 format, we use %Y%m%d
tmean_era5_land_df$date <- as.Date(tmean_era5_land_df$date, format = "%Y%m%d")

str(tmean_era5_land_df)

You can save the the above DF as .RDS, .csv, .xlsx as required.

########### End of script ###########
